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NUMERICAL CALCULATIONS OF MERTEN'S CORRECTION FOR

ZERO AND FIRST ORDERS
by

Bill D. Cook

Thae siuplified theory of Raman and Nath for the diffraction
of light by ultrasonic waves is valid only for a small range of exper:i-
ental values. Mertens1 has supposedly extended this range by a per-
turbation method. It is the purpose of this memdrendum to give certain
nuaerical values which will allow the computation of the light inten-
sities in the zero and first diffracted orders from lierten's results.

The results of Mertens for the light amplitude of the nth
order can be expressec as

0, =3 (V) +iH A (v) + BB (v) (1)

where J (v) is the nth order Bessel function of argument v. The
2\ n L
*2

H N

parameter H is where A\ is the wavelength of light, L is the
path length of the light through the ultrasonic bean, M, 8 the index
of refraction of the undisturbed medium, and A? is the wavelength of

sound?, An(v) end B (v) are power series expressed as follows

i 2m+n
An = “‘___;o Bn,m v (2)
and B = 2' b o (3)
n =1 n,m
where s & ) 2n+n( 2n+1

mB 6 (2% (a!) () (%)
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and b o (-1)™ [6m + (n+1)(10n -7)] [m + 1/6(2° + 3n-6)]
n,m

(60) (2™®)(m-1)! (m + n-1)! (5)

The prime over the summation sign in Eq. (3) means that the sum starts

with n = 2 when n = 0. The light intensity is given by
*
1,-9, 4 - (6)

32v) + WE (a%(v) + 23, B (v) ) + B' BZ (v) = -

L
3E(v) + u? G (v) + &' 82 (v),

where Gn(v) = Aﬁ(v) + 2Jan(v) (8)

Mertens gives only the first two terms of Eq. (8) in his final result,
Tables I and II give numerical valucs needed to compute Io and 11
respectively, from equation (8).

The paramecter H is completely determined by the experi-
mental condition. For water and the Hg green line, it can be expres-
sed as

AR
H=1.5x 10°° FL (9)

where F is the frequency in megacycles and L is the widta of the sound
beam in cm.
Teble III gives the values of the oy T and bn a in order that

) )
one may calculate A,ﬂ and Bn for any value of v.
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i TABLE I TABLE II
i 1 II I 11
4 2 2
i v Go(v) B, Gl(v) B,
0.2 .000411 - -.00201 .000017
0.4 .001574 - -.000717 .000061
' 0.6 .003295 .000003 -.001306 .00011L
0.8 .005894 .000008 -.001262 .000156
i | 1.0 007260 .000015 -.001311 .000168
b | 1.2 .008918 .000023 -.000053 .001415
- 1.k .010078 .000029 .002318 .000086
- i.6 .010680 .000029 .005777 .000027
- L.8 .010807 .000022 .010095 -
| 2.0 .010669 .000010 .014855 .000043
. 2.2 .010653 - .019520 .000184
- Bl .010697 .000006 .023517 .000L431
| 2.6 .011691 . 000044 .026343 .000763
- 2.8 .013378 .000131 .027660 .001133 i
- 3.0 .015895 .000280 .027366 .001472
- 3.2 .019095 .000494 .025630 .001705
- 3.k .022680 .000761 .022877 .001771
- 3.6 026245 .001053 .019730 .001636
- 3.8 .029348 .001327 .016909 .001315
i 4.0 .031593 .001534 .015113 .000872
: h.2 .032707 .001624 .014898 .000415
i L. 4 .032603 .001564 .016573 .000083
! 4.6 .031410 .001347 .020137 .00001k
i 4.8 .029465 .001000 .025287 .000316
i 5.0 .027269 .000592 .031354 .001038 ;
] 5.2 .02540k .000222 .037605 002142 ]
H 5.k 02khh3 .000013 043166 .003511 ‘
5.6 .024846 000087 .0L7262 .00koLT -
5.8 .026880 .000545 .049339 .006205
6.0 .030572 .001kko .0k9161 .0070k0
6.2 .035253 .002650 .047068 .007326 '
6.4 .0LO8TY .004187 043270 .006879 !
6.6 048559 .005826 .038682 .005775
6.8 .051561 .007332 .034261 .004198
7.0 ,055202 .008458 .030973 .002459
7.2 .057001 .008965 .02961k .000952
T.h 056756 .008772 ,030706 .000086
7.6 054604 .007798 034356 .000205
7.8 .051008 .006184 040250 .001513
8.0 .0L6697 .004193 OLTEET .004015
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TABLE I (continued)

2
(o]

.0k2558 .002205
.039492 . 000664
.038265 .000004
.039372 .000568
.0k2943 .002533

- e ————————————

<

Go(v) B

O OO\ &1

048707 .005853
056014 .010237
.063935 .015169
.071399 .019971
077363 .023906
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(1) R. Hertems, Mendedeling Koninklijke Viaamse Academie
Wetenschapen, 12, 1-37 (1950).

(2) R. B. Miller and E. A, Hiedemann, Jour. Acous. Soc. Am.,
30, lok2 - 1046, (1958).
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Demonstration of the “Least Stable Waveform”
of Finite Amplitude Waves

M. A, BREAZEALE AND W. W, LESTER

Depariment of Physics, Michigan State Unsversity,
East Lansing, Michigan

(Received July 28, 1961)
A backward-sloping ultrasonic wave is generated by reflection
of a finite amplitude distorted wave from a pressure-release bound-

ary. The difference between the behavior of this wave and that of a
wave distorted in the usual sense is demonstrated.

S is well known, an ultrasonic wave of large amplitude can
undergo distortion so that the slope of its leading edge is
much greater than that of its trailing edge. If such a nonsymmetric
wave is reflected from a boundary, two extreme cases are possible:
The waveform may be unchanged, as in the case of a perfectly
rigid reflector, or it may be inverted, as in the case of a perfect
pressure-release reflector. For a pressure-release reflector, the re-
sulting waveform would have the slope of its trailing edge greater
than the slope of its leading edge. Such a waveform has been
described by Fay! ac the ‘least stable waveform” in contrast
with the more usual case of the most stable waveform. In the
least stable waveform the fundamental harmonic component can

e
7 /) (@)

F1G. 1. Effect of phase
shift of second harmonic in
resonant transducer. (a) In-
cident distorted wave, (b)
resulting CRO wave.

g

’
/1 2N
7 w ®
increase with distance, while the higher harmonics decrease with

distance.? Thus, an initially distorted wave can become undistorted
as it progresses. The following experiment was designed to demon-

strate the inversion of waveform on reflection from a pressure-
release boundary and this decrease of distortion with distance.

A pisssure-release reflector was constructed by stretching a
plastic membrane over an air chamber, and a rigid one by mount-
ing an aluminum plate so it could be easily attached in place of
the pressure release boundary.

The experiment was performed with high intensity 2-Mc ultra-
sonic pulses in water. The waveform of the ultrasonic pulse at
various distances before and after it had been reflected was moni-
tored by use of a barium titanate transducer. Since the receiver
resonated near the second harmonic, this harmonic was accentu-
ated in the waveform displayed on an oscilloscope. Further, the
receiver resonance caused a phase shift of almost 90° in the second
harmonic component displayed on the oscilloscope. This made it
possible to detect very small amounts of second harmonic by ob-
serving the “flattening” of the bottom of the oscilloscope trace
and the “sharpening” of the top. This is illustrated in Fig. 1. For
a distorted wave such as that illustrated in (a) we get the oscillo-
scope trace shown in (b) when the phase shift of the second har-
monic is 90°. The increase of waveform distortion with distance
could be observed by watching this type of distortion on the scope.
Since there is a phase shift of 180° in each of the harmonics when a
rigid reflector is used and 9° when a presssure-release reflector is
used, the corresponding oscilloscope traces differed markedly from
each other.

Figure 2 gives a series of pictures of oscilloscope traces which
show the transducer output at increasing distances from the source.
It can be seen that the distortion of the waveform increases with
distance. As indicated, reflection from a solid boundary produced
the waveforms shown in the second row of pictures where it can
be seen that the distortion continues to increase with increasing
distance. On the other hand, the lower part of the figure shows that
the wave on reflection from a pressure-release boundary isinverted;
i.e., it is distorted in the “wrong direction.” Therefore, the distor-
tion decreases with increasing distance unti! at a distance from
the pressure-release reflector almost equal to that between the
transducer and the boundary, the waveform is again essentially
sinusoidal. On progressing farther, the wave becomes sinusoidal
and then distorts again. Considerations of this type of distortion
might be necessary if one were concerned with reflection of finite
amplitude waves from the free surface of liquids.

The authors wish to express their appreciation to Professor
E. A. Hiedemann for the interest he has shown in this work, and
to the Office of Naval Research for their sponsorship.

1 R. D. Fay, J. Acoust. Soc. Am, 29, 1200 (1957).
? Isadore Rudnick, J. Acoust. Soc. Am. 30, 564 (1958).

15cm 30 cm

Rigid
Boundary
15 cm 30 cm
Pressure- .
Release 3 -
Boundary e
15 cm 30 cm

45 cm 6J)cm
45 cm 60 cm

F1G, 2. Distortion of a finite amplitude wave as it progresses from a sinusoidally vibratinf source and is reflected from a rigid
undary or a pressure release boundary. The boundaries are 90 cm fr

om the source.
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Optical Method for Ultrasonic Velocity Measurements at Liquid—Solid Boundaries*

WALTER G. MAYER AND JomN F. KELSEY}
Physics Department, Michigan State University, East Lansing, Michigan
(Received November 24, 1961)

An optical method is used to measure the energy ratio of reflected and incident ultrasonic waves at a
liquid-solid interface. The ultrasonic velocities in the solid are calculated from the angles of maximum re-

flection in the liquid.

HE intensity ratio of reflected to incident ultra-
sonic waves at a liquid-solid boundary as a func-
tion of angle of incidence is given by Ergin! as

(5); [cosﬂ—A cos:x(l—B)]”

(1
I cosB+A4 cosa(l—B)

where a is the angle of incidence in the liquid measured
from a line normal to the interface, 8 and vy are the
angles of refraction of the longitudinal and shear wave
in the solid. The quantities 4 and B are defined by

A=p2VL/p1V1, (2)
B=2 siny sin2y[cosy— (Vs/V 1) cosB], 3)

where p; and p, are the densities of the liquid and the
solid, respectively, and V7 is the velocity of the incident
wave in the liquid; V1 and Vs are the velocities of the
refracted longitudinal and shear waves in the solid.
Substituting accepted values for the densities and
velocities of water and Plexiglas in Eq. (1) one obtains
the curve shown in Fig. 1(a) for the intensity ratio
(R/I)?. Figure 1(b) shows this ratio for a water-
aluminum boundary. The ultrasonic wave is incident
in the water in both cases. In order to obtain these
curves one has to use the appropriate angles 8 and v

(o) ()

-

-3

e

¥

O 10 20 30 40 350 60 7 8 90
ANGLE OF INCIDENCE

g
e R

PERCENT REFLECTION (ENERGY)
[

0O 10 20 %

Fic. 1. Intensity ratio of reflected to incident wave as a func-
tion of angle of incidence for (a) a water-Plexiglas boundary
where Vs<V;<Vy and (b) a water-aluminum boundary where
Vi<Vg<Vy.

* Presented at the 62nd meeting of the Acoustical Society of
America, Cincinnati, November 1961.

t NSF Undergraduate Research Pzicicipant.

1K, Ergin, Bull. Seism. Soc. Am. 42, 349 (1952).

for a given angle of incidence a. These angles are found
from Snell’s law

V1/V L=sina/sing, 4

It can be seen from Eq. (4) that sina=V;/V. or
sina= V/V s at the critical angles for the longitudinal
and shear wave where sin8 or siny equal unity. One
can obtain Vi and Vs if V; is known provided the
critical angles can be located. Equation (1) and Fig. 1
show that the ratio (R/I)?=1 at the critical angles.
The associated peaks in the intensity of the reflected
wave can be .scated experimentally and can be used
to calculate V and Vg for the solid.?

An optical method is used to find the angle of in-
cidence at which the intensities of the reflected and
incident beams are equal. The arrangement is shown
in Fig. 2. The solid sample and the transducer are

| A

V1/V s=sina/siny.

Photemultiplier

Transducer

<

F16. 2. Diagram of the optical arrangement.

Semple

placed in a tank filled with water. While the angle of
incidence is changed by rotating the transducer, the
sample is also rotated in such a manner that the re-
flected sound beam remains at right angles to the
collimated light beam. The reflected ultrasonic wave
produces a diffraction pattern in the plane of the pho-
tomultiplier. The light intensity in the nth order of the
diffraction pattern is given by

In=Ja2(v), ®)

where v is proportional to the amplitude of the ultra-
sonic wave producing the diffraction pattern. Keeping
the output of the transducer constant and measuring
the light intensity in the zero order, one finds a pro-
nounced dip at that angle of incidence where the re-
flected ultrasonic wave is most intense. Figure 3(a)

?W. G. Mayer, J. Acoust. Soc. Am. 32, 1213 (1960).
269
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shows the zero order light intensity for an 8-Mc con-
tinuous ultrasonic wave reflected from a water-Plexi-
glas boundary. For convenience the intensity of the
incident wave is kept low enough so that the zero-order
Bessel function is positive for all possible values of v
of the reflected wave. The critical angle is located at
33.5° from which one finds V.=2700 m/sec, using
Eq. (4). The velocity in water Vr can be determined
by measuring the spacing between the lines of the
diffraction pattern produced by the reflected wave in
the liquid. Figure 3(b) shows the intensity of the re-
flected wave obtained from the data given in Fig. 3(a).
The theoretical curve predicted by Eq. (1) is also given.

The same technique is used to measure Vsif Vs> V7.
In this case the light intensity in the zero order reaches
a minimum at the critical angle for the shear wave and

(o) (®)

) A
|

- »

(%)

(%)
o]
L]

3

/

4 0

P4

LIGHT INTENSITY
S
ENERGY REFLECTION

3 R 33 34 33 B 3N 32 33 34 I3 3
ANGLE OF INCIDENCE

Fic. 3. Critical angle for longitudinal wave in Plexiglas: (a)
zero-order light intensity in diffraction pattern produced by re-
flected wave in water; (b) corresponding values of (R/I)2. Solid
line shows theoretical values.

@) )

e

3

LIGHT INTENSITY (%)
4
d
A
ENERGY REFLECTION (%)

22 23 24 25 26 & 22 23 24 25 26 27
ANGLE OF INCIDENCE

Fic. 4. Critical angle for shear wave in glass: (a) zero-order
light intensity in diffraction pattern produced by reflected wave
in water; (b) corresponding values of (R/I)%. Solid line shows
theoretical values.

remains at that level. An example is given in Fig. 4(a)
which shows the measured light intensity in the zero
order produced by a wave reflected from a water-glass
boundary at angles in the vicinity of the critical angle
for the shear wave. The corresponding intensity of the
reflected wave is shown in Fig. 4(b). The critical angle
for the shear wave is 25.4° corresponding to a shear
wave velocity of 3445 m/sec.

It should be noted that this analysis does not include
surface waves or plate iransmission phenomena. The
method given here has the advantage that the velocity
of the longitudinal and shear wave in the solid can be
calculated without having to observe the waves in the
solid directly.
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g . Diffraction of Light by Two Spatially Separated
| _ Parallel Ultrasonic Waves of Different Frequency *
By
L. E. HARGROVE, E. A. HIEDEMANN and ROBERT MERTENS **

With 5 Figures in the Text
(Received January 8, 1962)
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A theory is developed for the diffraction of light by two spatially separated
parallel ultrasonic progressive waves of different frequency. The preliminary theo-
ries of RamMaN and NatH [C. V. RamaN and N. S. NatH, Proc. Indian Acad. Sci.
A 2, 406—412; 413—420 (1935)] for normal and oblique incidence are taken to be
valid. The resulting equations are extensions of earlier results of R. MERTENS,
Z. Physik 160, 291 —296 (1960). The predicted periodicity of the diffraction spec-
trum with increasing sound beam separation agrees with the well known periodicity
of the light intensity distributions in the Fresnel zone of the phase grating formed
by the first ultrasonic wave. Results of numerical calculations are presented to
illustrate features of the theoretical results, as reflected in the first order of diffrac-
tion for 3-0 and 6:0 Mc ultrasonic waves in water.

Introduction

Theoretical results have been given by Rao!, MUurTY?2, and MERTENS?
for diffraction of a wide light beam by an ultrasonic wave consisting
of two commensurable frequency components with arbitrary relative
phase. These theoretical results are for simultaneous diffraction of light
by the two frequency components contained in the same sound beam.
MERTENS? recently pointed out that simultaneous diffraction and
successive diifraction by two separate parallel ultrasonic beams are not
the same. MuRTY and RAo® obtained very good agreement between
their experimental results from a successive diffraction experiment and

1 Rao, B. R.: Proc. Indian Acad. Sci. A 29, 16—27 (1949).

2 Murty, J. S.: J. Acoust. Soc. Amer. 26, 970—974 (1954).

3 MERTENS, R.: Proc. Indian Acad. Sci. A 8, 288—306 (1958).

4 MerTENS, R.: Z. Physik 160, 291 —296 (1960).

5 Murty, J. S, and B. R. Rao: Z. Physik 157, 189—197 (1959). The agreement
obtained is indeed surprising, as it is doubtful that progressive waves were obtained
at 3.0 and 1.5 Mc in a metal tank only 12 in. long.
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Diffraction of Light by Two Waves of Different Frequency 327

values calculated from simultaneous diffraction theory. Also, the dif-
fraction effects of two parallel ultrasonic waves have proven useful, in
a limited range, in investigations® 7 of finite-amplitude distortion: Simul-
taneous diffraction theory was used. But, as MERTENS has stated,
simultaneous and successive diffraction differ negligibly for the cases
considered experimentally by MurTy and Rao. In a limited range,
simultaneous and successive diffraction spectra are indistinguishable.
HARGROVE® made some preliminary experimental studies of successive
diffraction and reported qualitative, but lack of quantitative, agreement
between his experimental results and simultaneous diffraction theory.
MERTENS’ 4 paper, giving expressions for the amplitudes of light diffracted
by two parallel, adjacent (no space between), ultrasonic beams with
integer frequency ratio and arbitrary relative phase, appeared shortly
after the experimental results of HARGROVE were reported. The present
theoretical development was undertaken to include the spatial separation
of ultrasonic beams which existed in the experimental arrangement of
HARGROVE.

RaMAN and NAaTH®!° developed a theory to explain the diffraction
of light by sound for the case of a wide plane wave of light passing through
a plane sinusoidal ultrasonic wave at normal incidence. The theory
predicts that the light is diffracted at discrete angles given by

sind®, = — rA[A*, (1)

where 7 is zero or a positive or negative integer, and 4 and A* are the
wavelengths of light and sound, respectively. Equation (1) is valid for
any plane periodic sound wave. The Raman-Nath theory predicts that
for a progressive sinusoidal ultrasonic wave the normalized intensity I,
in the r-th order of diffraction is

I, =] ), ()
where the Raman-Nath parameter v is approximately proportional to
the sound pressure amplitude and given by

v=2npulLla, ()

where u is the peak change in refractive index caused by the sound
pressure and L is the width of the sound beam. Equation (2) is valid
if the light wavefront can be considered to be changed only in relative
phase as it passes through the sound beam. This assumption has been

'ZEI;EL, K. L.: J. Acoust. Soc. Amer. 32, 707—713 (1960).

7 MAYER, W. G., and E. A, HIEDEMANN: J. Acoust. Soc. Amer. 32, 706— 708
(1960).

8 HARGROVE, L. E.: J. Acoust. Soc. Amer. 32, 940 (A) (1960).

9 Raman, C. V., and N.S. NaTH: Proc. Indian Acad. Sci. A 2, 406—412 (1935).

10 RamaN, C. V,, and N. S. NATH: Proc. Indian Acad. Sci. A 3, 75—84 (1936).
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considered justifiable!12 for conditions under which
(27 L Av)/(uoA*?) = N, (4)

where 1, is the refractive index of the undisturbed medium and N lies
in a range 1 <N <2, depending on the accuracy required.

Proceeding from assumed validity of the Raman-Nath theory, we
shall obtain expressions for the diffraction of light by two spatially
separated parallel ultrasonic waves of different frequency. This devel-
opment follows the method used by MERTENS* and extends his results
to more general cases. Some results of numerical calculations will be
presented to illustrate the dependence of the first diffraction order light
intensity on various parameters.

Development of the Theory

Consider two parallel ultrasonic beams with width L, and L, sepa-
rated by a distance L’ as indicated in Fig. 1. Let plane monochromatic

X

m-beam n-beam
Wf (5Lm)
g/ 0,,’
(X tm*L’)
ds
x=x'#ln L") YanShnp
Oe—xod 5
4 L lntl’ Imtlptl’
Fig. 1. Coordinate axis for the case of two spatially separated lle] ul ic beams and the schematic

path of a typical light'ray
light be incident in the -+ z-direction. The first sound beam produces
a change in refractive index given by
U (%,8) = ptg + o Sin 278 (mv*t — mx[A* + 6,,/27) (5)

where »* is the ultrasonic fundamental frequency and 9, is the relative
phase of the m-th harmonic. Similarly, for the second sound beam,

tn(%,8) = po + p,sin 2 (my* t — nx/A* 4 6,/27). (6)

11 EXTERMANN, R., and G. WANNIER: Helv. phys. Acta 9, 520—532 (1936).
12 Ryrtov, S. M.: Diffraction de la lumiére par les ultra-sons. Actualités scienti-
fiques et industrielles, 613. Paris: Hermann & Cie. 1938.
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We have assumed that there exists a fundamental frequency »* such that
n and m are integers. The enumeration of diffraction orders and the
corresponding diffraction angles shall be those pertaining to the funda-
mental frequency.

According to the preliminary theory of RAMAN and NATH, the light
amplitude at the point (x’, L,) is given by

o(+', L,) =exp [_—”'f—li’&“—“J X

X exp [— 1v, sin 27w (mv*t — mx'[A* + 0,,/27] exp (27 ive),

@

where v is the frequency of the incident light. From the identity

exp (— tasinb) = exp [tasin (—d)] = 1g)]P(a) exp (—ipbd), (8)
p=—00

Eq. (7) becomes

. +o0
(¥, L,) = exp [:ﬁ%ﬂlﬂl} exp (2mivt) —Z_ Jp (v,) X ©)

X exp [27 ip (mx'[A* — mv*t — §,,/27)].

Consider now the p-th term of Eq. (9) which represents light propagating
in the direction ¢,,= —sin [mp Au,A*] with amplitude J,(v,,).
This light component progresses to the plane z=L, 4+ L’ through
medium undisturbed by ultrasonic waves. However, the light path
(see Fig. 1) is displaced from x' to x”. At the point (x",L, + L')
the amplitude of the p-th component is

Pl Lo + L) = exp| 2050t |exp | Z2%pmt [ (10)

X exp [27i (v — mpv*) t] exp[ 2"if""i/} exp (— i 8,) J,(Um)-

Equation (10) expresses the amplitude of the plane wave of light incident
on the second sound beam, making an angle #,,, with the z-axis. Using
the Raman-Nath elementary theory for oblique incidence!?, Eq. (10)
must be muiltiplied by

Ly/cos B,

exp[(— 2nifd) f ;;:,(s, t)ds], (14)

where the integral in (11) represents the optical path length of the p-th
component in the second sound beam. The coefficient of this integral
should be —2xi (v — mpr*)/c but is here approximated by — 2z /A

13 RaMAN, C.V., and N. S. NaTH: Proc. Indian Acad. Sci. A 2, 413—420 (1935).
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since »*< v and only a few terms of Eq. (9) are significant. From
Eq. (2) we obtain

Uy, (8, 8) = po + p, sin 27w [nv*t — n (x — ssin B, ,)/A* + 6,/2x]. (12)
The intregal in (11) then becomes

Ly/cos O p
(s, ds=_tobs W&
, cos By p n 7 Sin By p (13)
[}
t ><sin[2nn v‘t——-{ + ZL}'." tanﬂmﬁ +6]Sln "” "tanﬂ

The value of the integral is substituted into (11) and this result mul-
tiplies Eq. (10). The result of this multiplication is expanded (¢ = sum-
mation index) according to Eq. (8). The ¢-th component represents the
amplitude of a final light component which has been successively dif-
fracted #,,, by the first sound beam and #,, by the second sound beam,

and is given by
po=Jo(m) Jo{ sin [*2E% tan 9,,,} x
—2nimp

X exp[—#(pd,-+g8,)] exp[ “2TIME (L, + L)tand,,|x | (14)

nnL,,smG,,p

xexp[ 2’”" (L,[2) tam?,”,]exp{ _2;'f!!o %;50—1:1 ;
mp

Time and space terms which do not contribute to the final intensities

have been deleted from Eq.(14). In the argument of the last exponen-

: tial factor (with L'=0), MERTENs! essentially approximated 1/cos #,,,
1 by unity and this term no longer contributed to the final intensities.
4 However, as this last exponential factor accounts for the different optical
phases of the light components which combine to form a given order

of the final spectrum, we must retain it. The different phases arise from

the different (for different p) path lengths from the plane z =L, to the

plane z=L,,+ L,+ L’ in a medium with refractive index y,. The next

to last exponential factor in Eq. (14) expresses the effect of the average

ultrasonic phase difference (i.e., in addition to 6, and 6,) along the

oblique light path through the second sound beam. The second exponen-

tial factor expresses the effect of the additional ultrasonic phase differ-

ence between the points (x', L,) and (x, L, +L,+L’) of emergence

of light from the two ultrasonic beams. The effect of the actual phase

differences of the two ultrasonic waves is expressed by the first exponen-

tial factor in a manner identical with that for simultaneous diffraction. i 3

The factors multiplying v, in the argument of the Bessel function of

order ¢ give an effective Raman-Nath parameter for oblique incidence.

The »-th order of the final spectrum with frequency (v —r »*) makes

an angle 4, =4,,,+9,, with the z-axis. Summing all ¢,, such that
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mp +ng=r we obtain the amplitude in the r-th order to be

Po= X' P (15)

where the prime on the summation indicates summation on all integer
values of p and ¢ such that mp +ng=r, r =0 or positive or negative
integers.

For the special cases m =1 and 4,,=0 or n =1 and §,=0, the sum-
mations can be written in a straightforward manner with a single
summation index and no prime on the sum.

For m =1, p =r —nq (always an integer) giving

Z Jo-nq (v‘)]"{nnL,.smo,_,., sm["’”‘” tand, ,,,,]} X

g=—00

X exp (—1¢é,) exp [:—2?'—’('—_-'—'1‘— (L, + L) tan 19,_,,,,] X (15")

Xexp[ 2m""( L,[2) tand},_ ,.,,}exp{_—*——z‘;.""" iﬁs;—L) d
e ”q

Forn=1, ¢ =r—mﬁ (always an integer) giving
A
Z Jp (v,) ]'-.np{ It sm[ % tan ’,]}x

e nly, smo,,,p

X exp(—ipé,, )exp[ _2""”” ( ,,+L')tam9,,,,J><

(1 5”)
X exp [_ﬂl}:__ﬁf’), (L,]2) tam?,,,,,} X
2:1 ipg (Ly+ L)
* eJ\p[ ; cos By p

Equations (15’) and (15") with L'= 0 correspond to MERTENs* Egs. (9)
and (11) respectively.

We may express ¢, in approximate forms which are more suitable
for numerical calculations by using

O, ~ tan 9, & sind, = — k A/(uo A%), (16)

and the variables 1/cos &, =secdh ~ 1 + 192/ = (7)
A ’ 2

Q=$;?Ln and Q —‘“:J;nz L. (18)

Use of (16), (17), and (18) gives the approximate form of Eq.(15) to be

+00
> TolomJo[on G anmtR exp[— i (p 8 + 48] X

pq=—0

X exp [% impngQ + 3 im2p2(Q + Q’)}.

tnmpQ (19)
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For m=1 the approximate form is

+00 ;
=3 Jrng®) [on BF =200 exp (— igs) x

o In(r—ng)

xexp[1ing(r—ng) Q +3ilr —ng1* (@ + Q).

(19"

For n =1 the approximate form is

+00 -
(pr =p=Z—oo]P (vm)]r— mp [vl 5";'}‘"';%_@_ exp (_ 1? 6,,,) X

X exp| Limpr—mp) Q+ 3 imt$(Q + Q).

The more useful results are summarized in these last three equations.
The light intensities are obtained from

I, =g (20)

(19")

Discussion

The inclusion of the space L’ between the two sound beams is a
newly added parameter in the theory of successive diffraction. In most
experimental arrangements there will be some beam separation necessary
to accomodate the crystal mountings. Let us first consider the effect on
diffraction of the beam separation L’. From Eq. (19) we see that the
dependence of light amplitude on L’ is expressed by the factor

exp (Fim*p* Q) (1)

and, being independent of # and ¢, (21) depends only on L’ and para-
meters pertaining to the first ultrasonic beam. The character of the
diffraction spectrum should be periodic as the argument of (21) changes
by integral multiples of 2z for all values of 4. By expressing the argu-
ment of (21) in terms of L’, taking p =1, and equating the result to
2Pgn, where P is a positive integer, we obtain the periodicity rela-

s Ly = 2P (jtg A*¥jm* 4).. 22)
Using Ay = A*/m we now note that
Lp =2P(uy An*4) = 2PD (23)

where D is the distance from z = L,, in which the phase modulated wave-
front at z =L, reappears, as predicted by NATH! for progressive waves.
At z=L, + D the light wavefront is the same as at z=L,_ except for
being shifted by A%/2 in the x-direction. Thus we see that the effect

U NaTH, N. S.: Proc. Indian Acad. Sci. A 4, 262—274 (1936).
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of L’ equal to odd multiples of D is the same as changing 4, by +x
radians with L’ =0. Furthermore, the diffraction spectra for any L’
plus integral multiples of 2D are identical. These periodicity features
will be illustrated with numerical examples.

Numerical calcula_tidns of the positive first-order light intensities
were made using an electronic computer. Several of the parameters
were chosen identical with those for which one of the authors has experi-
mentally investigated simultaneous!® and successive® diffraction. The
fixed parameters used for calculations are v* =3.0 Mc, A* =0-5 mm

a3

g

/

§

WA

o1 \\/f

2 x/2 x Ix/2 x
x
Fig. 2. First-order light intensity vs the variable X; a; =0.200 and Q' = 5n/16

§

First-order light infensity
g
pd
v
g

(water), 2=5461 A, m =2, n =1, py=1-33 (water), L, =L, =2-0 cm
and v; =2:40. The equation used for calculation, obtained from Eq.
(15"), was

I.,~

& v sinpQ N i
P=Z_’]p(vz) Ji-2p [l_ro“] exp [24p2Q" +ip (Q — az)j[ . (28

Equation (24) was evaluated for @, =v,/v, from 0 to 0.200 in intervals
of 0:025, X =(Q —4,) from 0 to 2 in intervals of /16, and Q' from 0 to
z in intervals of 7/16. For a, =0-200 calculations were also made for
Q' from 0 to n/4 in intervals 7/64.

As one varies the relative phase between the two sound beams, the
intensities in the diffraction orders oscillate. Our attention shall be
limited to amplitude and phase of the oscillations of the first-order light
intensity and the effect on them of the ratio @, and the sound beam
separation as expressed by the variable Q'.

Typical first-order light intensity vs the variable X is shown in Fig. 2.
Note that the extrema of the intensity in this case do not occur for X

¥i'.~H'ARGROVE, L.E., and E. A. HIEDEMANN: J. Acoust. Soc. Amer. 33, 1747— 1749
(1961).
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(nor for ;) equal to integral multiples of 7, and that the curve is not
symmetric about the extrema. For the case of simultaneous diffraction,
the relative phases for extrema are integral multiples of . For the case
of successive diffraction, the relative phases for extrema depend on
both Q and Q' and also, in general, on the amplitudes of the separate
sound beams. For the special cases Q' equal to integral multiples of
n/4, the phases for extrema appear to be independent of a,. Figure 3
shows the values of X corresponding to extrema of the first-order
light intensity, with respect to variation of X, vs Q' for a, =0-200.
The curves for Xy,, and Xy, for Q' not equal to integral multiples
of 74 are approximate because the location of extrema was estimated
from calculations made in discrete intervals of the appropriate variable.
Symmetry of numerical values about the extreme values for Q' equal
to integral multiples of z/4 indicated that these calculated values
are truly extrema and that the intensity vs X curves are symmetric
about the extrema for these special values of Q.

Figure 4 shows the extrema of first-order light intensity with respect
to variation of relative phase, for a, =0.200, vs Q'. This clearly illus-
trates the periodicity of the diffraction with beam separation. Another
illustration of the periodicity is also shown in Fig. 4. The first-order
light intensity for constant X and a, =0-200 vs Q' is shown for X =0 and
for X=4n (i.e, for =0 and 4,=0Q +=x). Note, in Fig. 4, the
difference between extrema (with the corresponding changes in relative
phase) and the intensity variation with fixed relative phase. The parti-
cular fixed relative phases X =0 and X = 4 are chosen here for
comparison because these give extrema for Q' =0, x/2, z,....

The effect of the ratio a, on the extrema of first-order light intensity
is shown in Fig. 5. The extrema are shown as a function of 4, for various
values of Q’. Calculationss of the extrema from simultaneous diffraction
theory differ from those for Q' =0 by at most the order of 10-2 of the
total unit light intensity. However, the differences in predicted extrema
for larger Q’ are shown here to be significant.

We should remark that the more interesting applications of successive
diffraction theory are to those cases for which the results differ signifi-
cantly from the case of simultaneous diffraction. The simultaneous
diffraction equation equivalent to Eq. (19) is

Pr =qul ]p ('0,,,) ]q(vn) exp [— ? (P am == 96")] . (25)

Equation (19) reduces to Eq. (25) as Q and Q' approach zero. For suffi-
ciently small values of } nmp Q the argument of the Bessel function of
order ¢ in Eq. (19) is negligibly different from v,. Furthermore, for
approximate equivalence between successive and simultaneous diffrac-
tion, the argument of the last exponential factor in Eq. (19) must be
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small for all values of p giving significant contributions to the sum.
We conclude that the difference between successive and simultaneous
diffraction is most marked for Q and/or Q' large. But we must recall
that complete validity of the preliminary Raman-Nath theories for
normal and oblique incidence has been assumed in the development of
the successive diffraction theory. The limitation on the Raman-Nath
results formulated in Eq. (4) is closely related to the parameter Q by
the relationship

Q<Np (26)

for the fundamental frequency. This indicates that the product Qun?
must be less than a number in the range 1 to 2, depending on the accuracy
required. An analogous limitation applies to the first sound beam.
In the case of successive diffraction, where the final diffraction spectrum
depends greatly on the amplitude and phase of the various light compo-
nents emerging from the first sound beam, the limitation expressed by

@CrL, Av)/(min)=N, 1=Nz=2, (27)

may not be sufficiently stringent. It remains to be shown that there
exists a range of the various parameters for which (1) the Raman-Nath
theories are sufficiently accurate and (2) the difference between successive
and simultaneous diffraction is significant. Reasonable experimental
agreement might be obtained for @ small and arbitrary Q’, since Q’
does not affect validity of the Raman-Nath theories but can give signifi-
cant difference between successive and simultaneous diffraction.

%,
|
|
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Pressure Variation of the Index of Refraction of Liquids.

by

M. A. Breazeale

Introduction.,

Results of the study of the propagation of light in liquids under
pressure can be used directly in the study of the diffraction of light by
vltrasonic waves, This fact, though it is sufficient justification for the
ctudy, is only one aspect of the overall problem, since it might also be
possible to gain basic information about the structure of the liquid if this
phenomenon were completely understood.

It has been pointed out repeatedly that the equation given by
Z-orenz1 and Lorentzz, while it is well founded theoretically, is not as
accurate in relating the index of refraction and density of a liquid as,
for example, the Eykman3 formula, which is a completely empirical relation.
Willatdh has proposed using the Eykman formula to calculate the change of
index of refraction with pressure in the study of ultrasonic waves in water
Oy optical methods. Although Willard did not completely justify the use of
this formula, since he referrcd to the work of Gibson and Kincaid who worked
only with benzene, it will be seen that the data collected here will support
its use with watcr, carbon tetrachloride, benzene, and methyl alcohol. These
data are collected to show how the valucs obtained by use of the threce
relationships agree with those obtained by various experimenters, and hence
to give a most probable value of 1/B8 dn/dp to be used in such experiments as
the measurcment of ultrasonic pressurc aaplitude using optical mcthods.
Further, it is suggested that the Gladstone-Dalec relation be used since it
combines the advantage of simplicity with accuracy.

Discussion of Data

These data arc taken primarily from the papers by Raman and
>

Venkataraman~ by Gibson and Kincaid6, and Waxler! of the Burcau oi Standards
who used the Gibson and Kincaid prccsure vessel and a Pulfrich refractometer

for making measurements.
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In evaluating dn/dp, cognizance was taken of the fact that the
curve relating n and p is not linear, and tnus, ¢n/dp is a function of p,
in gencral decreasing with incrcesing p. Since the ultrasonic measurements
are made at relatively low pressurcs, of the order of onc atmosphere, an
attempt was made to cvaluate the slope dn/dp at p = O. This was an approxi-
mate procedure because of the way the data was taken. The data was taken at
fairly large pressure intervals. Thus, it would be expected that the values
given would tend to be smaller than the ones for p = O because of the curva-
ture of the pressure-index of refraction relationship, The typical curvature
»Z this relationship is shown in figure 1, which is a plot of some of the
'ata of Gibson and Kincaid. From this curve can be scen the accuracy of the
lctermination of the slope at p = O. For example, because of the large
separation of the experimental points, the slope drawn on the 25° curve could
be 10 percent lower if it actually passed through the second experimental
point. Onc might estimate that the accuracy of the slope is something
+ 10 percent. The data for water shown in Figure 2 from Waxler is more
lincar. Hence, the estimation of the slope is more accurate. It would be
still better if the experimentel points had been taken at lower pressures.
This is the rcason for the fact that Raman and Veniiataremaon used an inter-
ferometric method for making measurements. Bccause of the extreme sensitivity
of this method, they were ablc to make measurements when the pressure changes
were of the order of 10 centimetcrs of mercury. They measured both isothermel
and edicbatic values. Naturally, the adiabatic values arc of more interest
if one is studying the propegation of ultrasonic waves using light diffraction.
It is to be noted, however, that in general the difference Letween the adia-
batic and thc isothermal values is less than the difference expected because
of experimental inaccuracy in the ultrasonic experiments, For cxample, the
difference between the adiabatic and the isothermal values of dn/dp for
water as measurcd by Raman and Vcnketareman is 0.2 perceat. For carbon
disulphide it is 2 percent, which is the larges: differcnce for any liquid
given by them. In most cases, thercforc, isothermal values will be sufficient-
ly accurate for ultrasonic experiments.

Table 1 is a compilation of the availzble values of the piezo-
optic coefficicnt., Only Ramen and Venliataranen give adiabatic values. For
comparison, vclues are given for both the Lorenz-Lorentz cquation and the
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Eykman formula, As has been pointed out by Raman and Venkataraman, the
Lorenz-Lorentz equation gives values for 1/8 (dn/dp) which are too large.
Without exception, the Eykman formula gives lower values, and almost without
exception, this lower value agrees better with the experimental ones. On
the other hand, the Gladstone-Dale relation gives values which are usually
lower than the experimental ones and which agrece almost as well as thosc
given by the Eykman formulecs, Therefore, it might be concluded thet in the
absence of experimental data the Gladstone-Dale relation is to be preferred.




t
i
a
I
i
i
i
i
f

NDEX »

1510 1

-REFRACTIVE

$00 ~

140~

page 30

For Calenlad :“’t

(35) % .

7

BENZENE

""OIM Gibson 2 fo‘nCA:.d)

200 400 6‘00 alaa u'»o
PRESSURE
( BARS )

FIGURE 1 |




B e — |
| !
page 31.
4
E B
| i 1.389 +
-
:
: ‘ ! i ,
’ E |
a ‘3o 1 |
‘ : e [ :
L@ Iy 4 |
E B . Z ‘
» e
g
W
S u / WATER
| (4xom Waxler)
f
L} i ; .
S 400 ot o
PRESSURE
BARS)

FIGURE 2

g




L e i e SRS

N
™M
® G21L° Qg69° 1929° LELY® g13L" 1929°1 9°22 2prydInsip
m uoqav)
62t geE” g2t * 6HhE © 609€ * 0ge€°1 g°22 108091V
T443oK
Ggec HGHE * €19€° 92¢" 66a2E 1 ¢S
20EE " ELyE " #EGE * got * H20E€ 1 SH
LI€E" oghE 269¢€ HGe " OLTIEE 1 49
12€€° 206€” LooE* oyE” 262¢E°1 G2
12¢° gae” 92€€ " Lot #99€ * 92EE°1 1°t2
ZneE 91SE* £got* wWe* g2wEEcr @
Eqee 81s€E " Ggot * EHE" gEHEE 1 0% ao3en
Lly* 268y ° €L1s 1605° 665 %2534 "1 €y
8o ° 16%° oH2s” GgLS* €05 28161 GE |
Lon® 226 925° hgéh* 61€S" 6.85° G6E” ongén 1 (44 ouozuag
sonn* Lylye 1616° 9t * 859t °1 S
L264° qI8h” 92£G* g1y* +L26h°1 (49 N
885 * 2a8h”° 02€5* 69+4° 18854 °1 €2 100
UO
1'd0) 8 g/doigY 14 g, WO o "9 u
w1 i\ T, ®WT  (1-v) Tor)(1-,9) .~lm+.._lav.?. =58) u 1 A
pPITCOULY UBUBRIVIBUDA aied uomiAg 23ud107
pue uosqr)y puv ucumoy =-2U038pPeId .S & 1¢ ZUdI0T  IOTXTM

l.|.|>

% /

‘1 @192l

R




i et AR

page 33.

b Conclusgion

1 ‘ The Eykman formula gives a value for 1/B (dn/dp) which is of the

1 order of 6 to 12 percent lower than that given by thc uncorrected Lorenz-
Lorentz equation for the liquids studied, and which agrce much better with the
experimental values. For those liquids both the Eyman formula and the
Gladstone-Dale relation give values which agree with the experimental values
of Raman and Venkataraman to within 7 percent, the Eykman vzlues being in
general above, and the Gladstone-Dale values in gencral below, the experi-
mental ones. Listed in Table II are the wmost probable values for 1/8 (om/ap).
The accuracy of these values is certainly 10 percent. They are cssentially
mean values of all those found in the literature, weighted in the direction

of the values given by Raman and Venkataramoan sincc these appear to be most
dependable. Also listed are the indices of refraction and the values
obteined by using the Gladstone-Dale relation.
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Table II.
most Gladstone
probable Dale
Liquid a é— “%} (n-1) |
ccl 1.458 0.48 458 ‘
Benzene 1.498 0.51 . 498 i
! Water 1.322 0.33 « 332 !
Methyl !

Alcohol 1.328 0.33 .328 f
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